BTS IRIS PRÉSENTATION DU COURS DE PHYSIQUE APPLIQUÉE (Unité U.3)

LISTE DES THEMES DU PROGRAMME

Thème I. ACQUISITION D'UNE GRANDEUR PHYSIQUE (Capteurs)

Rôle d'un transducteur. Transducteur passif ; transducteur actif ; transducteur à sortie numérique.

Qualités statiques et qualités dynamiques d'un capteur.

Thème II. ANALYSE DU SIGNAL

II.1. Propriétés temporelles du signal.

Représentations temporelle et complexe d'un signal sinusoïdal.

Valeur moyenne d'un signal périodique.

II.2. Propriétés fréquentielles du signal.

Représentation fréquentielle d'un signal périodique.

II.3. Propriétés énergétiques du signal.

Puissance instantanée. Puissance moyenne transportée par un signal périodique. Valeur efficace d'un signal périodique.

Thème III. TRAITEMENT ANALOGIQUE DU SIGNAL.

III.1. Système analogique non linéaire : application à la fonction comparaison.

Comparateur simple, comparateur à hystérésis.

III.2. Système analogique linéaire : application à la fonction amplification.

Amplification, gain et bande passante d'un amplificateur de tension.

III.3. Système analogique linéaire : application à la fonction filtrage.

Définition d'un filtre ; application aux filtres du premier et du second ordre. Fonction de transfert harmonique d'un filtre. Représentation de Bode. Bande passante.

Thème IV. ECHANTILLONNAGE ET CONVERSION DU SIGNAL.

IV.1. Echantillonnage.

Principe de fonctionnement d'un échantillonneur-bloqueur.

Spectre d'un signal échantillonné. Théorème de Shannon.

IV.2. Conversion analogique-numérique et conversion numériqueanalogique.

Définitions : résolution, quantum, temps de conversion.

Reconstitution du signal.

Thème V. TRAITEMENT NUMERIQUE DU SIGNAL.

V.1. Système numérique linéaire : réponse à une loi de commande.

Signal discret ; opérations sur une séquence de nombres.

Système numérique récursif ou non récursif.

Utilisation de la transformée en z

V.2. Système numérique linéaire : application au filtrage.

Thème VI. TRANSMISSION DU SIGNAL.

VI.1. Propagation d'un signal.

Propriétés d'une onde électromagnétique (longueur d'onde, fréquence, affaiblissement, dispersion...).

VI.2. Transmission d'un signal par câble.

Ligne fermée sur son impédance caractéristique.

VI.3. Transmission d'un signal par fibre optique.

Propriétés et utilisation des fibres optiques.

VI.4. Modulation et démodulation du signal à transmettre.

Notion de modulation et démodulation d'un signal modulé : cas d'un signal numérique.

Thème VII. SYSTEMES LINEAIRES.

VII.1. Formalisme et identification d'un système analogique.

Définitions : régime transitoire ; régime permanent ; réponse indicielle ; réponse impulsionnelle ;

système analogique linéaire.

Identification d'un système à partir de sa réponse indicielle.

VII.2. Outils d'étude d'un système analogique linéaire.

Définitions : transmittance statique, constante de temps ; pulsation propre ; pseudo-période ; coefficient d'amortissement ; temps de réponse ; dépassement. Transmittance isochrone ; transmittance isomorphe. Utilisation de la transformée de Laplace.

VII.3. Systèmes asservis analogiques.

Fonctions de transfert d'un système asservi.

Définition : stabilité et précision d'un système ; dilemme stabilité-précision ; marge de phase.

Notion de correction (correcteur proportionnel et correcteur P.I).

VII.4. Systèmes asservis échantillonnés.

Principe.

Thème VIII. ENERGIE ELECTRIQUE: DISTRIBUTION ET CONVERSION.

VIII.1. Distribution électrique et sécurité.

Notions générales sur le transport et la distribution de l'énergie électrique ; rôles d'un transformateur.

Sécurité : danger d'électrocution ; limites des domaines de tension ; régime de liaison à la terre.

VIII.2. Conversion électromécanique d'énergie.

Notions générales sur la conversion électromécanique. Réversibilité de fonctionnement d'une machine

électrique tournante.

Définitions : puissance absorbée par une machine électrique et puissance utile.

VIII.3. Conversion statique d'énergie.

Notions générales sur l'Electronique de puissance et sur le pilotage des machines électriques.

Conversion continu-alternatif et conversion continu-continu.

Définitions : puissance active ; puissance apparente ; facteur de puissance.

Notions sur la pollution électromagnétique.

TS IRIS (Physique Appliquée) Christian BISSIERES http://cbissprof.free.fr

SAVOIR-FAIRE EXPERIMENTAUX

Savoir-faire expérimentaux directement liés au réglage et à l'utilisation des périphériques de mesure :

- Maîtriser l'utilisation d'un oscilloscope :
- application des règles de sécurité,
- utilisation des modes monocourbe, bicourbe et XY,
- réglage des zéros,
- calibrage de la base de temps et des amplificateurs de voies,
- sélection de la position AC-DC des entrées,
- choix de la voie de déclenchement,
- utilisation de la fonction addition, de la fonction inversion,
- utilisation de la fonction mémoire.
- Maîtriser l'utilisation d'un générateur de fonctions :
- choix d'un type de signal,
- réglage de l'amplitude et de l'offset de ce signal,
- réglage de la fréquence et du rapport cyclique de ce signal.
- **Maîtriser** l'utilisation d'un multimètre numérique pour mesurer des grandeurs moyennes ou efficaces :
- application des règles de sécurité,
- choix d'un appareil adapté aux caractéristiques fréquentielles du signal à étudier,
- choix de la fonction (ampèremètre, voltmètre, ohmmètre),
- choix de la touche du commutateur (AC ou DC ou AC+DC),
- choix du calibre.
- Maîtriser l'utilisation d'une pince :
- pince ampèremétrique,
- pince multifonctions.
- Maîtriser l'utilisation d'outils informatiques :
- logiciel d'analyse de spectre,
- carte d'acquisition,
- tableur,

Page 2 sur 3

- logiciel de simulation.

Savoir-faire expérimentaux directement liés à la préparation des mesures :

- Passer d'un schéma de principe à un schéma de montage en précisant la position des appareils (la méthode de mesure étant donnée).
- Choisir le matériel et les composants en fonction de la puissance mise en jeu.
- **Mettre en oeuvre** un montage alimentable en **B**asse **T**ension (B.T) en respectant le protocole de mise sous

tension assurant la sécurité de l'opérateur et la protection du matériel.

- câbler et décâbler hors énergie,
- réaliser le circuit de puissance avant le branchement d'appareils de mesure destinés à être montés en parallèle.
- ne mettre en service l'alimentation qu'après vérification du montage,
- consigner les alimentations avant toute modification du montage.
- **Vérifier** le bon fonctionnement d'une structure illustrant une fonction figurant au programme.

Savoir-faire expérimentaux directement liés à l'acquisition des mesures et à leur exploitation :

- **Mesurer** des grandeurs électriques dans le domaine de la B.T et dans le domaine de la **Très B**asse **T**ension (T.B.T) :
- valeur moyenne d'une tension, d'un courant, d'une puissance,
- valeur efficace de signaux comportant ou non une composante continue.
- **Faire l'acquisition** de signaux, en vue de leur analyse par un moyen informatique.
- Mesurer des grandeurs à l'oscilloscope :
- une tension (amplitude, ondulation, dépassement...),
- une durée (constante de temps, temps de montée, temps de réponse à 5% près, période...),
- une différence de phase entre deux signaux sinusoïdaux,
- un rapport cyclique.

- Relever et exploiter une caractéristique :
- caractéristique de transfert,
- caractéristique fréquentielle (module et argument) d'un amplificateur ou d'un filtre.
- caractéristique mécanique d'une machine électrique.
- Exploiter des mesures de grandeurs électriques pour en déduire :
- une puissance moyenne,
- une amplification en tension,
- une différence de phase entre deux signaux sinusoïdaux,
- une vitesse de propagation.
- **Donner** le résultat d'une mesure avec un nombre de chiffres significatifs adapté à l'appareil utilisé.