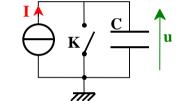
TP N°11


CHARGE D'UN CONDENSATEUR VÉRIFICATION DES LOIS D'ASSOCIATION

OBJECTIFS

- Tracer la courbe u_C (t) pour une charge à courant constant et en déduire la valeur de la capacité.
- Refaire la manipulation avec des associations de condensateurs et vérifier les lois d'association (parallèle ou série).
- Tracer la courbe u_C (t) pour une charge à tension constante et à travers une résistance.
- Découvrir les premières propriétés de la courbe de charge à tension constante et à travers une résistance.

I- CHARGE A COURANT CONSTANT

Le schéma du montage est représenté ci-contre :

- Brancher le générateur de courant seul et le régler à la valeur I = 350 μA.
- ② Dessiner et réaliser le montage complet (avec mesure de u_C) en prenant un condensateur $C_1 = 1000~\mu F$. Ouvrir l'interrupteur K et relever les valeurs de u_{C1} pour 0 < t < 20s. Utiliser un chronomètre pour mesurer le temps. Pour la suite, on utilisera la petite carte d'acquisition TLC549.
- ③ Tracer la courbe u_{C1} (t) à l'aide du tableur *Excel*.
- ④ Mesurer, sur la courbe, le coefficient directeur et en déduire la valeur de la capacité C₁. Comparer la valeur de C₁ calculée, avec la valeur marquée sur le composant (1000 μF).
- ⑤ Refaire toute la manipulation à partir du **1-** mais avec $I = 700\mu A$; $C_1 = 1000 \mu F$ et 0 < t < 10s. Tracer la courbe sur le même graphe que la première.
- © Refaire toute la manipulation à partir du **1-** mais avec $I=700\mu A$; $C_2=2200~\mu F$ et 0 < t < 20s. Tracer la courbe sur un nouveau graphe.
- $\ \ \,$ Refaire toute la manipulation à partir du **1-** mais avec I=1mA; $C_2=2200~\mu F$ et 0 < t < 10s. Tracer la courbe sur le même graphe que précédemment.

& Faire vérifier tout le travail de la partie I-.

II- ASSOCIATION DE CONDENSATEURS

On utilisera le montage de la partie I-.

1- Association parallèle

- ① Régler le générateur de courant à I = 1mA et y brancher C_1 en parallèle avec C_2 . Chronométrer le temps que mets la tension $u_{C1//C2}$ pour atteindre 5 V.
- ② Déduire de la mesure précédente, la capacité C_P = " C_1 // C_2 " et comparer avec la loi d'association des condensateurs en parallèle.

2- Association série

- ① Régler le générateur de courant à $I=350\mu A$ et y brancher C_1 en série avec C_2 . Chronométrer le temps que mets la tension $u_{C1 \text{ série } C2}$ pour atteindre 5 V.
- ② Déduire de la mesure précédente, la capacité C_S = " C_1 série C_2 " et comparer avec la loi d'association des condensateurs en série.
- & Faire vérifier tout le travail de la partie II-.

III- CHARGE SOUS TENSION CONSTANTE ET À TRAVERS UNE RÉSISTANCE $R = 4.7 \ \mathrm{k}\Omega$

Le schéma du montage est représenté ci-contre :

① Dessiner et réaliser le montage (avec mesure de u_C), fermer K et relever la courbe u_C (t) pour 0 < t < 40s. La courbe sera tracée manuellement.

- ② Mesurer le temps mis par u_C pour atteindre 63% de 12V. Comparer ce temps à la grandeur $\tau = R \times C$.
- & Faire vérifier tout le travail de la partie III-.

 $C = 2200 \mu F$