TP N°05

ASSOCIATION DIPÔLE ACTIF - DIPÔLE PASSIF POINT DE FONCTIONNEMENT Alimentation d'une LED par le port série RS 232

OBJECTIFS

- Tracer la caractéristique U_{LED} = f (I) d'une diode électroluminescente (LED).
- Tracer la caractéristique $U_{\text{géné}} = f$ (I) d'un dipôle générateur constitué d'une ligne de sortie du port série RS232 d'un microordinateur.
- Déduire, de la caractéristique, le modèle équivalent de Thévenin (E et r) du port série.
- Trouver graphiquement les coordonnées du point de fonctionnement (U_P et I_P).
- Brancher la diode sur la sortie du port série et mesurer les coordonnées du point de fonctionnement (U_P et I_P).
- Aborder des notions de programmation en VISUAL BASIC (VBA).

I- ETUDE DU RÉCEPTEUR (LED) $\rightarrow 1h$.

1- Préparation

- - La LED ne sera étudiée que dans le sens passant.
- ② Calculer la valeur de la résistance de protection de la LED contre la tension maximale de l'alimentation.
 - La LED supporte au maximum 2V et 20mA.

2- Montage

- ① Réaliser le montage et faire vérifier.
- ② Effectuer les mesures et tracer la courbe $U_{LED} = f(I)$ avec I variant de 0 à 20mA. La courbe doit comporter une dizaine de points régulièrement espacés.

Faire vérifier → 6pts

II- ETUDE DU GÉNÉRATEUR

 \rightarrow 1h.

Les microordinateurs possèdent un ou deux "port série" de type RS232. Ce périphérique possède 8 lignes dont 5 en entrée et 3 en sortie.

Les trois lignes de sorties peuvent être utilisées en générateur et possèdent les mêmes caractéristiques.

La ligne de sortie étudiée se nomme RTS.

- $\ \, \mathbb O\,$ Dessiner le montage permettant de faire les mesures pour tracer la caractéristique $U_{g\text{\'e}n\text{\'e}}=f\left(I\right)$ du générateur.
 - Le "+" du générateur sera la ligne RTS et le "-" sera la masse de la RS232. Les lignes de sortie du port série peuvent être mises en court-circuit $(U=0 \implies I=I_{MAX})$.
- ② Réaliser le montage et faire vérifier.
- ③ Effectuer les mesures et tracer la courbe Ugéné = f (I) avec I variant de 0 à I_{MAX}. La courbe doit être tracée sur le même graphique que pour la LED. Utiliser le petit logiciel "IOtest" pour placer la ligne RTS à "1". Les lignes de sortie du port série peuvent être mises en court-circuit (I_{MAX}).
- $\textcircled{9} \ \ D\'{e}duire, \ de \ la \ caractéristique, \ le \ mod\`{e}le \ \'{e}quivalent \ de \ Th\'{e}venin \ (\ E \ et \ r \) \ d'une \ sortie \ du \ port \ s\'{e}rie \ dans \ sa \ zone \ lin\'{e}aire.$

Faire vérifier → 8pts

III- BRANCHEMENT DE LA LED SUR LE PORT SÉRIE → 30min.

1- Préparation

- $\ \ \, \mathbb O$ Déduire des deux courbes U=f(I) déjà tracées, les coordonnées du point de fonctionnement (U_P et I_P).
- ② Justifier que l'on peut brancher directement une LED sur une ligne du port série d'un PC c'est-à-dire sans utiliser de résistance de protection.

2- Montage

- Brancher la LED sur la ligne RTS.

 Mesurer la tension, le courant et comparer avec U_P et I_P du point de fonctionnement.
- \mathcal{A} Faire vérifier \rightarrow 6pts

3- Réalisation d'un "feu tricolore"

- Brancher une LED rouge sur la ligne RTS.
 Brancher une LED orange sur la ligne DTR.
 Brancher une LED verte sur la ligne TXD.
- ② Ouvrir le fichier "Feu_tricolore.xls" qui est un fichier Excel avec une programmation en *Visual Basic*.
 - Compléter le programme source pour réaliser un feu tricolore (5 secondes $\rightarrow rouge$; 5 seconde $\rightarrow vert$ et 1 secondes $\rightarrow orange$).