Exercices du Chapitre I-4

PUISSANCE ET ÉNERGIE ÉLECTRIQUE

EXERCICE	•

"Test rapide"

Cocher et justifier la bonne réponse pour les questions ci-dessous:

① Une résistance dissipe l'énergie quelle a absorbée sous forme.

☐ électrique ☐ lumineuse ☐ thermique

② Un dispositif absorbe une puissance totale de 500W.

Sa puissance utile est de :

□ 600W □ 1kW □ 450W

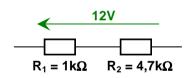
est: □ 88.9 % □ 12.5 %

 $\ \ \,$ L'énergie dissipée par une résistance de 20Ω parcourue par un courant d'intensité 10A

pendant 10 heures est:

□ 10kW.h □ 72MJ

 $\square \approx 50,2\text{mA}$ $\square \approx 35,4\text{mA}$


© La valeur maximale de la tension aux bornes d'une résistance de $1k\Omega$ et 1/2W est :

 $\square \approx 30.6V$ $\square \approx 22.4V$

 $\ \ \,$ La puissance reçue par la résistance R_2 dans le schéma ci-contre est :

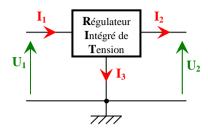
□ ≈3.2W

□ ≈20.8mW □ ≈13.4mW

EXERCICE 2

On dispose de trois résistances : [$220~\Omega$; 1W], [$4,7~k\Omega$; 1/4~W] et [$33~k\Omega$; 1W]. Pour chacune des résistances, calculer :

- $\ \ \,$ $\ \ \,$ L'intensité du courant maximal I_{max} qui peut la traverser.

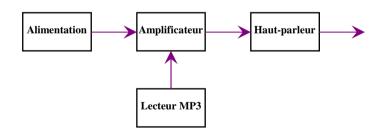

EXERCICE 3

Soit le schéma ci-contre illustrant l'utilisation d'un régulateur intégré de tension (RIT): Pour ce montage on donne : $U_1=15V\; ;\; U_2=9V\; ;\;$

 $I_1 = 800 \text{mA}$ et $I_3 = 10 \text{mA}$.

Calculer:

- ① La puissance P_A absorbée par le régulateur.
- ② La puissance P_U délivrée par le régulateur.
- 3 La puissance P_P dissipée par le régulateur.
- 4 Le rendement η du régulateur.


EXERCICE 4

Un fer à repasser porte les indications suivantes : 230 V et 1000 W.

- ① Calculer l'énergie **W** qu'il consomme en **2 h 30 min** (en kW.h et en J).
- ② Calculer l'intensité du courant I qui le traverse.
- 3 Calculer la valeur de sa résistance **R**.

EXERCICE 5

Une chaîne d'amplification comporte les éléments suivants (schéma ci-dessous):

La puissance P_{MP3} apportée par le lecteur MP3 sera considérée comme négligeable.

L'alimentation délivre la puissance électrique P_E.

L'amplificateur délivre la puissance électrique P_{HP} avec un rendement $\eta_1 = 55\%$.

Le haut-parleur délivre la puissance acoustique $P_A = 200W$ avec un rendement $\eta_2 = 70\%$.

- ① Compléter le schéma en indiquant, sur les flèches, la puissance mise en jeu.
- $\ensuremath{\mathbb{Q}}$ Calculer la valeur de la puissance P_E fournie par l'alimentation.