Chapitre I- 1-

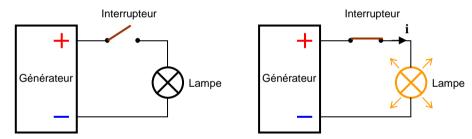
A- LE COURANT ÉLECTRIQUE

OBJECTIF

Connaître la nature microscopique du courant électrique. Savoir le représenter et le mesurer. Utiliser avec rigueur la loi des nœuds.

I- DÉFINITIONS

1- Nature microscopique du courant éléctrique


Le courant électrique est un mouvement d'ensemble de porteurs de charges électriques.

Il existe deux types de porteurs de charges électriques :

- les électrons (charge négative) dans les métaux.
- les ions (charge positive ou négative) dans les électrolytes.

La charge élémentaire exprimée en Coulomb est : $e = 1,6.10^{-19}$ C. Un électron transporte la charge : - e donc -1.6.10⁻¹⁹ C.

2- Circuit électrique

Un courant électrique ne peut s'établir que dans un circuit électrique fermé. Celui-ci doit contenir au moins un générateur électrique et un récepteur. Des conducteurs (fils) relient les différents éléments du circuit. L'interrupteur permet d'autoriser ou non le passage du courant électrique.

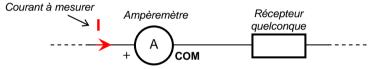
3- Intensité du courant électrique

Pendant la durée t, N charges transportent la quantité d'électricité : Q = N.e . L'intensité du courant électrique est définie par la relation :

 $I = \frac{Q}{t}$ I en Ampères (A), Q en Coulombs (C) et t en secondes (s).

Ordre de grandeurs :

- Electronique (circuits intégrés, transistors ...): nA (10⁻⁹A), μA (10⁻⁶A), mA (10⁻³A).
- Electronique de puissance (alimentations, amplificateurs ...): 1A à 1 kA (10³A).
- Electrotechnique (moteurs, centrales ...): 10A à 10⁴A.


II- LOI DES NŒUDS

1- Sens conventionnel du courant électrique et mesure

Par convention, le courant électrique est orienté dans le sens du mouvement des porteurs de charges positives (sens inverse du déplacement des électrons).

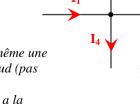
Le courant sort de la borne positive et entre par la borne négative d'un générateur.

La mesure du courant électrique se fait avec un **ampèremètre** que l'on branche **en série** dans le circuit conformément au schéma ci-dessous :

Lors de l'étude d'un circuit, souvent on ne connaît pas le sens réel du courant. Dans ce cas, on choisit arbitrairement un sens (dessin d'une flèche) et on mesure :

- Si I > 0, alors le courant circule dans le sens de la flèche.
- Si I < 0 , alors le courant circule dans le sens opposé à la flèche.

2- Loi des nœuds


Page 1 sur 1

Un nœud est une connexion qui relie au moins trois fils.

Il ne peut y avoir d'accumulation de charges électriques dans un nœud, il en résulte la loi cidessous :

<u>Loi des nœuds</u>: La somme des intensités des courants qui arrivent au nœud est égale à la somme des intensités des courants qui sortent du nœud.

Dans l'exemple ci-contre, la loi des nœuds donne la relation : $\,I_1+I_2=I_3+I_4\,.\,$

<u>Remarque</u>: Un composant électronique ou même une portion de circuit se comporte comme un nœud (pas d'accumulation de charges).

Pour le transistor bipolaire, par exemple, on a la relation : $I_E = I_B + I_C$.